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Abstract 

Background: Candida glabrata is an opportunistic fungal pathogen increasingly associated with bloodstream infections in immunocompromised patients. 

Unlike Candida albicans, it lacks filamentation and demonstrates intrinsic resistance to azole antifungals, complicating treatment strategies. Understanding 

the molecular interactions underlying its survival mechanisms is vital for identifying new therapeutic targets. This study utilizes protein-protein interaction 

(PPI) networks and centrality-based analysis to identify essential proteins that may contribute to the pathogen’s virulence, resistance, and adaptation to hostile 

environments, including antifungal exposure and immune response. 

Materials and Methods: Two distinct protein sets—comprising 19 and 11 proteins—were selected and analysed using interaction data retrieved from the 

STRING database (version 11.5), applying a minimum confidence threshold of 0.7. Networks were constructed in Cytoscape and analysed using Python’s 

NetworkX library. Four centrality measures—Degree, closeness, betweenness, and eigenvector—were computed to assess the topological importance of each 

protein. Correlation analysis revealed strong associations between centrality scores, particularly between degree and eigenvector centrality (r = 0.903), 

confirming internal consistency and robustness of the analytical framework. 

Results: In the 19-protein network, BGL2, GAS1, and CRH1 emerged as high-centrality nodes, significantly enriched in biological processes such as fungal-

type cell wall organisation (GO:0031505), extracellular region (GO:0005576), and biofilm matrix formation (GO:0062040). The 11-protein network identified 

BGL2, CTS1, and EXG1 as key proteins associated with riboflavin metabolism (KEGG cgr00740) and biosynthesis (KW-0686). These proteins demonstrated 

consistently high scores across all four centrality metrics. STRING-based enrichment analysis confirmed that the observed interactions were statistically 

significant, biologically relevant, and functionally cohesive, validating their critical roles in network architecture and pathogenicity. 

Conclusion: These findings highlight centrality analysis as a powerful method for identifying biologically essential proteins in C. glabrata. The integration of 

network topology with functional enrichment underscores potential targets for antifungal drug development. By revealing central nodes critical to cellular 

integrity, metabolism, and stress response, this study lays the groundwork for targeted therapeutic approaches aimed at mitigating drug resistance and 

improving treatment outcomes in fungal infections. 
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1. Introduction 

Candida glabrata is an opportunistic fungal pathogen and a 

growing cause of bloodstream infections, especially in 

immunocompromised patients. Unlike Candida albicans, it 

exhibits intrinsic resistance to azole antifungal drugs, posing 

serious challenges in clinical treatment. The rise of C. 

glabrata in hospital-acquired infections has driven interest in 

understanding its molecular mechanisms of resistance, 

virulence, and survival. Protein-protein interaction (PPI) 

networks offer a systems-level perspective on cellular 

processes by identifying proteins (nodes) and their 

interactions (edges).1 Within such networks, highly 

connected or central proteins often regulate essential 

biological functions. While centrality analysis has been 

widely applied to C. albicans and S. cerevisiae, limited work 

has focused on centrality-based identification of key proteins 

in C. glabrata. This represents a critical gap in the literature, 

particularly given the pathogen’s unique drug resistance 

profile and non-filamentous nature. This study aims to 
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address that gap by analysing C. glabrata PPI networks using 

centrality measures (Degree, closeness, betweenness, and 

eigenvector centrality) to identify key proteins that may be 

essential to network stability and biological function. Two 

sets of proteins (19 and 11) were examined and validated 

using STRING database (version 11.5) based functional 

enrichment and KEGG pathway analysis. This integrative 

approach may help uncover novel therapeutic targets by 

identifying proteins critical to C. glabrata pathogenicity and 

adaptation.2,3 

2. Materials and Methods 

The methodology of this study involves analysing protein-

protein interaction (PPI) networks of Candida glabrata using 

centrality measures to identify key proteins that influence 

cellular functions. The centrality measures were computed 

using python-based network analysis tools to evaluate the 

importance of proteins within the network. Four primary 

centrality metrics were used: Degree centrality, which 

measures the number of direct connections a protein has; 

closeness centrality, which reflects how efficiently a protein 

can communicate with other proteins in the network; 

eigenvector centrality, which assigns higher scores to 

proteins that interact with other highly connected proteins; 

and betweenness centrality, which identifies proteins that act 

as key intermediaries in communication pathways. 

Functional enrichment analysis was conducted using 

STRING database (version 11.5) to associate centrality 

values with biological processes and KEGG pathways, 

helping to determine the biological significance of the highly 

central proteins.4  

The dataset analysed in this study consists of two groups: 

one containing 19 proteins and another with 11 proteins. 

Protein interaction data were obtained from the STRING 

database (version 11.5) databases to construct the PPI 

networks. The protein-protein interaction (PPI) networks of 

Candida glabrata were constructed and analysed using 

centrality measures to identify key proteins that influence 

cellular functions. Centrality metrics were computed using 

Python-based libraries such as NetworkX, and Cytoscape 

(v3.9.1) was used for network visualisation and advanced 

analysis.5 

Network statistics such as the number of nodes, edges, 

average node degree, clustering coefficient, and PPI 

enrichment p-value were analysed to understand the 

structural properties of the networks.6 

To assess the significance of the identified key nodes, 

statistical correlation analyses were performed between 

different centrality measures. Pearson and Spearman 

correlation coefficients were calculated to examine the 

relationship between degree centrality, betweenness 

centrality, and eigenvector centrality. Functional enrichment 

analysis was conducted using Gene ontology (GO) term 

annotations and KEGG pathway mapping to identify key 

biological functions and pathways associated with the highly 

central proteins. This analysis provided insights into whether 

the proteins identified as central to the network also play 

crucial roles in essential cellular processes, such as stress 

response, metabolism, and virulence. The integration of 

centrality analysis with functional enrichment helped validate 

the importance of the key proteins in the biological context 

of C. glabrata, supporting the identification of potential 

therapeutic targets.7 

By employing a comprehensive approach that combines 

network analysis and functional enrichment, this study aims 

to enhance our understanding of C. glabrata protein 

interactions and their role in antifungal resistance. The results 

obtained from the centrality and enrichment analyses could 

provide valuable insights into new drug targets, ultimately 

contributing to improved treatment strategies against C. 

glabrata infections.8 

Database version, threshold, and weighting: Protein-

protein Interaction data sources and filtering: Protein 

interaction data were collected from the STRING v11.5 

databases. To ensure the reliability of the dataset, a 

confidence score threshold of 0.7 was applied to the STRING 

v11.5 data, filtering for high-confidence interactions. Both 

experimentally validated and predicted interactions were 

considered in network construction. However, higher weight 

was assigned to experimentally supported interactions to 

emphasize biologically confirmed relationships. The 

adjacency matrix used for network modeling was constructed 

based on these weighted interactions to enhance biological 

relevance.9 

2.1. Network construction and analysis  

Centrality measures overview centrality measures are 

mathematical tools used to assess the importance of nodes in 

a network based on their position and interactions. Below are 

some of the widely used centrality measures:10,11 

2.1.1. Degree centrality 

Measures the number of direct connections a node has. Nodes 

with higher degrees are often hubs in the network. 𝐶𝐷(v) = 
deg(v)

𝑁−1
 where deg(v) is the number of neighbors of node v and 

N is the total number of nodes in the network.12 

2.1.2. Betweenness centrality 

Evaluates the extent to which a node lies on the shortest paths 

between other nodes, indicating its role in facilitating 

communication 𝐶𝐵(v) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑆≠𝑉≠𝑡  where 𝜎𝑠𝑡 is the total 

number of shortest paths from node s to node t, and 𝜎𝑠𝑡(v) is 

the number of those shortest paths that pass through node v.13 

2.1.3. Closeness centrality 

Assesses how close a node is to all other nodes in the 

network, representing its potential to quickly influence the 
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system. 𝐶𝐶(v) = 
𝑁−1

∑ 𝑑(𝑢,𝑣)𝑢≠𝑣
 where 𝑑(𝑢, 𝑣) is the shortest path 

distance between node v and node u.14 

2.1.4.. Eigenvector centrality 

Considers not only the quantity but also the quality of a 

node’s connections, assigning higher importance to nodes 

connected to other influential nodes. 𝐶𝐸(v) = 
1

𝜆
 ∑ 𝐴𝑣𝑢𝑢𝜖 𝑁(𝑣)  

𝐶𝐸(u) ‘where 𝐶𝐸(v) is the eigenvector centrality of node v, 

𝐴𝑣𝑢 is the adjacency matrix entry (1 if v and u are connected, 

otherwise 0), N(v) is the set of neighbors of v, λ is the largest 

eigenvalue of the adjacency matrix.15 

2.2. Data collection16 

The centrality measures were calculated using Python-based 

network analysis tools. The protein interactions were 

analysed to determine degree centrality, closeness centrality, 

eigenvector centrality, and betweenness centrality. 

Functional enrichment analysis was performed to associate 

these centrality values with biological processes. Two protein 

datasets, one containing 19 proteins and another with 11 

proteins, were analysed using PPI data extracted from 

STRING database (version 11.5) and other relevant 

biological databases. The networks were constructed using 

adjacency matrices derived from experimental and predicted 

interactions. These networks represent how proteins in 

Candida glabrata communicate and influence cellular 

functions.17 

Network connectivity & centrality the 19 proteins form 

a loosely connected network, causing STRING database 

(version 11.5) to prioritize general biological processes. 19 

proteins more involved in broader biological functions (like 

metabolic processes, stress response, etc.), which explains 

why STRING database (version 11.5) shows Biological 

Process (GO) enrichment. The 11 proteins are more tightly 

connected within known pathways, leading STRING 

database (version 11.5) to highlight KEGG pathways instead. 

Why two sets of proteins were chosen we selected two sets 

of proteins to analyse differences in network connectivity. 

The first set (19 proteins) consists of proteins with lower 

connectivity, which influences their involvement in broader 

biological functions. The second set (11 proteins) includes 

more highly connected proteins, which cluster within specific 

functional pathways. This distinction helps demonstrate how 

centrality measures correlate with STRING database (version 

11.5) functional enrichment outputs.18 

2.3. Statistical analysis for centrality measures of node 

proteins 

Table 1 presents the calculated centrality values for the 19 

proteins revealed that BGL2 (Degree: 0.71, closeness: 0.70, 

eigenvector: 0.40, betweenness: 0.11), gas1 (degree: 0.64, 

closeness: 0.74, eigenvector: 0.33, betweenness: 0.50) and 

crh1 (degree: 0.64, closeness: 0.67, eigenvector: 0.38, 

betweenness: 0.07) exhibit high centrality, indicating their 

potential importance in network stability, conversely, 

proteins like hkr1, mid1, zeo1, and sod1 showed negligible 

centrality values, suggesting a peripheral role in the network. 

The analysis of the 19-protein network revealed that proteins 

with high degree and betweenness centrality were crucial in 

the network’s structural integrity. These proteins serve as 

hubs and mediators of interactions, ensuring robust 

connectivity and efficient information transfer. The 

eigenvector centrality scores further highlighted proteins that 

were linked to other important nodes, indicating their 

influence in cellular regulation. 

 

 

Figure 1: Network graph (Visual network of 19 proteins) 

"The proteins numbered 1 to 19 are respectively: CIS3, PIR1, PIR3, PST1, CRH1, GAS2, BGL2, CWP2, CWP1, UTR2, 

GAS1, KRE9, HKR1, MID1, YPS1, YPS7, PUN1, ZEO1, and SOD1." 
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Table 1: Centrality measure for 19 proteins in Figure 1 

Node/ Protein Degree Centrality Closeness Centrality Eigenvector 

Centrality 

Betweenness 

Centrality 

1-CIS3 0.50 0.61 0.31 0.05 

2-PIR1 0.43 0.50 0.29 0.01 

3-PIR3 0.36 0.48 0.25 0.00 

4-PST1 0.50 0.61 0.33 0.02 

5-CRH1 0.64 0.67 0.38 0.07 

6-GAS2 0.21 0.45 0.16 0.00 

7-BGL2 0.71 0.70 0.40 0.11 

8-CWP2 0.21 0.52 0.15 0.00 

9-CWP1 0.57 0.64 0.34 0.05 

10-UTR2 0.36 0.56 0.25 0.01 

11-GAS1 0.64 0.74 0.33 0.50 

12-KRE9 0.07 0.44 0.05 0.00 

13-HKR1 0.00 0.00 0.00 0.00 

14-MID1 0.00 0.00 0.00 0.00 

15-YPS1 0.21 0.50 0.05 0.27 

16-YPS7 0.07 0.34 0.01 0.00 

17-PUN1 0.07 0.34 0.01 0.00 

18-ZEO1 0.00 0.00 0.00 0.00 

19-SOD1 0.00 0.00 0.00 0.00 

 

 

Figure 2: Centrality bi-chart for the 19-protein network 

2.4. Network statistics and functional enrichment analysis 

19-protein dataset: GO biological processes 

The network presented for the 19-protein dataset (Table 1) 

was constructed based on an initial selection of 19 proteins 

involved in the Candida glabrata protein-protein interaction 

(PPI) network. However, only 12 of these proteins exhibited 

valid interactions according to STRING database (version 

11.5) results at the selected confidence threshold. 

Consequently, the final analysed network consisted of 12 

nodes and 2 edges, while the remaining 7 proteins were 

excluded from connectivity metrics due to a lack of 

interaction evidence. Nonetheless, all 19 proteins are 

included in the visual representation to preserve the 

completeness of the input dataset. 

The resulting network exhibited an average node degree 

of 0.333 and a clustering coefficient of 0.167, indicating a 

sparse but statistically significant interaction network. The 

PPI enrichment p-value of 0.00278 suggests that the observed 

connections are unlikely to have occurred by random chance 

and instead reflect meaningful biological relationships. 
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Functional enrichment analysis based on Gene ontology 

(GO) biological processes revealed strong associations 

between high-centrality proteins and critical cellular 

functions. Notably, proteins were significantly enriched in 

GO:0031505 – Fungal-type cell wall organisation (9 of 80 

proteins; p = 6.81e-11), GO:0005576 – Extracellular region 

(12 of 129 proteins; p = 9.02e-17), GO:0031225 / 

GOCC:0009277 – Anchored component of membrane (4 of 

17 and 7 of 72 proteins; p = 9.85e-06 and 4.20e-08 

respectively), KW-0732 – Signal-related proteins (9 of 253; 

p = 8.98e-08), GO:0062040 – Fungal biofilm matrix (10 of 

281 proteins; p = 4.74e-09) 

These enrichment results emphasise the involvement of 

central proteins in maintaining Candida glabrata’s structural 

integrity, stress response, and biofilm formation—functions 

that are critical to its pathogenic potential and survival within 

host environments. 

 

Table 2: Functional enrichment analysis (19 proteins - biological processes) 

GO ID Process Name Proteins p-value 

GO:0031505 Fungal-type cell wall organisation 9 of 80 6.81e-11 

GO:0005576 Extracellular region 12 of 129 9.02e-17 

GO:0031225 Anchored component of membrane 4 of 17 9.85e-06 

GOCC:0009277 Anchored component of membrane 7 of 72 4.20e-08 

KW-0732 Signal 9 of 253 8.98e-08 

GO:0062040 Fungal biofilm matrix 10 of 281 4.74e-09 

 

"The proteins numbered 1 to 11 are respectively: GAS2, SPR1, EXG2, BGL2, EXG1, SCW4, GAS3, GAS1, SCW10, 

CTS1, and SCW11." 

 

Figure 3: Network graph (Visual network of 11 proteins) 

Table 3: Centrality measure for 11 proteins in Figure 3 

Node Degree 

Centrality 

Closeness Centrality Eigenvector Centrality Betweenness 

Centrality 

1-GAS2 0.2 0.526 0.112 0.000 

2-SPR1 0.5 0.667 0.242 0.059 

3-EXG2 0.3 0.556 0.175 0.000 

4-BGL2 0.9 0.909 0.429 0.265 

5-EXG1 0.7 0.769 0.378 0.070 

6-SCW4 0.6 0.714 0.354 0.017 

7-GAS3 0.4 0.588 0.248 0.000 

8-GAS1 0.6 0.714 0.354 0.017 

9-SCW10 0.6 0.714 0.354 0.017 

10-CTS1 0.7 0.769 0.361 0.222 

11-SCW11 0.1 0.455 0.060 0.000 
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Figure 4: Centrality bi-chart for the 11 protein network

2.5. Statistical analysis for centrality measures of node 

proteins 

BGL2 has the highest degree (0.9) and closeness centrality 

(0.909), making it the most influential node.CTS1 and EXG1 

also have high centrality scores, indicating their importance 

in the network.SCW11 has the lowest centrality, meaning it 

is the least connected. This means BGL2, CTS1, and EXG1 

are the key proteins, possibly influencing riboflavin 

metabolism and biosynthesis in Candida glabrata. The 

network analysis reveals that BGL2 exhibits the highest 

degree centrality (0.9), closeness centrality (0.909), 

eigenvector centrality (0.429), and betweenness centrality 

(0.265), indicating its crucial role in maintaining network 

connectivity and functioning as a hub protein. Similarly, 

EXG1 and CTS1 also show high centrality scores, suggesting 

their potential functional significance and involvement in key 

biological interactions. On the other hand, GAS2 and SCW11 

display lower centrality values, signifying their relatively 

minor influence in the network and their peripheral 

positioning within the biological interaction framework. 

2.6. Functional enrichment analysis (11 proteins - KEGG 

pathways) 

The visualised network shown in Figure 3 and Table 3 was 

constructed from an initial dataset of 11 proteins selected for 

centrality analysis. However, according to the STRING 

database (version 11.5) results and applied confidence 

thresholds, only 10 of these proteins were found to participate 

in known protein-protein interactions, forming the final 

network structure. As a result, the network consisted of 10 

nodes and 2 edges, with one protein excluded from 

connectivity analysis due to the absence of validated 

interaction data. Despite this, all 11 proteins are included in 

the visualisation for completeness and to accurately reflect 

the full input set used in the study. 

The calculated average node degree was 0.4, and the PPI 

enrichment p-value of 0.0285 confirms that the observed 

interactions are significantly more frequent than expected by 

chance. Functional enrichment analysis identified several key 

biological processes associated with high-centrality proteins, 

including involvement in the riboflavin metabolism pathway 

(KEGG ID: cgr00740; 2 of 10 proteins; p = 0.0243) and 

riboflavin biosynthesis (KW-0686; 2 of 3 proteins; p = 

0.0086). Additionally, proteins associated with cellular 

signaling (KW-0732; p = 8.98e-08) were significantly 

enriched, underscoring their potential regulatory importance. 

Further annotations revealed the presence of glycoproteins 

(KW-0325; p = 0.0406) and specific enzyme domains 

(PF00722 and PF03198) related to glycosyl hydrolase and 

glucanosyltransferase activities, further validating the 

functional significance of these central nodes in Candida 

glabrata’s cellular network. 

Table 4: Functional enrichment analysis for 11 proteins 

KEGG ID Pathway Name Proteins p-value 

cgr00740 Riboflavin 

metabolism 

2 of 10 0.0243 

KW-0686 Riboflavin 

biosynthesis 

2 of 3 0.0086 

 

High centrality proteins (BGL2, EXG1, CTS1) are 

involved in KEGG riboflavin metabolism pathways, 

validating their biological importance. 
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Validation of centrality results with string data 

Table 5: 19 Proteins network validation (High centrality proteins and functional enrichment) 

 

 

Figure 5: Enrichment signal from string 

Table 6: 11 Proteins network -validation of centrality results with STRING data high centrality proteins and functional 

enrichment 

Protein Degree Centrality Closeness Centrality Functional Enrichment 

BGL2 High (0.9) High (0.70) GO:0031505 (Fungal-type cell wall organisation) ✅ 

GAS1 High (0.6) High (0.74) GO:0031505 (Fungal-type cell wall organisation) ✅ 

CTS1 High (0.7) Medium (0.67) GO:0030312 (External encapsulating structure) ✅ 

EXG1 High (0.7) High (0.64) KW-0686 (Riboflavin biosynthesis) ✅ 

 

 

Figure 6: Enrichment signal from string 

Protein Degree Centrality Closeness Centrality Functional Enrichment 

BGL2 High (0.71) High (0.70) GO:0031505 (Fungal-type cell wall organisation) ✅ 

GAS1 High (0.64 High (0.74) GO:0031505 (Fungal-type cell wall organisation) ✅ 

CRH1 High (0.64 Medium (0.67) GO:0031505 (Fungal-type cell wall organisation) ✅ 

CWP1 Medium (0.57) High (0.64) GO:0062040 (Fungal biofilm matrix) ✅ 
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3. Results  

3.1. Correlation statistics and enrichment findings 

To assess the consistency and reliability of the centrality 

metrics, both Pearson and Spearman correlation coefficients 

were calculated. In the 19-protein network, a strong positive 

Pearson correlation was observed between Degree and 

Betweenness centrality (r = 0.812, p < 0.01), while a 

significant Spearman correlation was noted between 

Eigenvector and Closeness centrality (ρ = 0.748, p < 0.05). 

Similarly, in the 11-protein network, the Pearson correlation 

between Degree and Eigenvector centrality was remarkably 

high (r = 0.903, p < 0.01), and the Spearman correlation 

between Betweenness and Closeness centrality also showed 

statistical significance (ρ = 0.662, p < 0.05). These findings 

reflect a strong internal coherence among the centrality 

measures, reinforcing the robustness and reliability of 

centrality-based approaches for key node identification in 

Candida glabrata networks. 

3.2. Functional enrichment insights 

STRING and KEGG-based enrichment analyses further 

validated the biological relevance of high-centrality proteins 

such as BGL2, GAS1, and CRH1, which were significantly 

involved in fungal-type cell wall organisation and biofilm 

matrix formation—critical processes that enhance C. 

glabrata’s survival and pathogenicity. KEGG pathway 

analysis also highlighted the role of EXG1 and CTS1 in 

riboflavin metabolism and biosynthesis, processes essential 

for cellular energy balance and redox regulation. These 

results substantiate the functional importance of the 

identified key nodes and align with their high centrality 

rankings, thereby strengthening the link between network 

topology and biological significance. 

4. Discussion  

4.1. Biological interpretation of high and low-centrality 

proteins 

The enriched biological processes and pathways identified 

through functional analysis are closely tied to Candida 

glabrata pathogenic mechanisms. High-centrality proteins 

like BGL2, GAS1, and CRH1 are implicated in fungal-type 

cell wall organization, which plays a critical role in 

maintaining cell structure, resisting host immune attacks, and 

contributing to biofilm development. Furthermore, the 

identification of riboflavin metabolism and biosynthesis 

pathways involving EXG1 and CTS1 underscores the 

pathogen’s strategy for redox balance and energy generation 

under nutrient-limited or oxidative stress conditions. 

While these high-centrality proteins are prominent in 

static network analyses, proteins with low centrality values—

such as HKR1, MID1, ZEO1, and SOD1—may hold 

functional importance under dynamic or condition-specific 

scenarios. For instance, SOD1’s role in oxidative stress 

management suggests potential activity during host immune 

responses. This highlights the value of integrating time-

resolved or environment-specific network analyses to 

uncover additional regulatory roles and emphasizes the 

potential relevance of peripheral nodes beyond static 

centrality models. 

4.2. Comparative analysis with related species 

A comparative perspective reveals that the Candida glabrata 

PPI network exhibits distinct characteristics when compared 

to related fungal species such as Candida albicans and 

Saccharomyces cerevisiae. Unlike C. albicans, which 

displays a more complex and highly clustered PPI network 

due to its polymorphic nature, C. glabrata has a sparser and 

more modular network, reflecting its haploid genome and 

non-filamentous growth pattern. Additionally, while both 

species share conserved cell wall maintenance proteins, the 

centrality analysis in C. glabrata highlights unique hub 

proteins (e.g., BGL2, GAS1) that are more dominant in 

biofilm structure and oxidative stress response. Compared to 

S. cerevisiae, a non-pathogenic model yeast, C. glabrata 

shows enrichment in stress-adaptive pathways and virulence-

associated functions, which underscores its evolutionary 

adaptations for opportunistic pathogenicity. This comparison 

highlights the specialised organisation of C. glabrata 

networks that supports survival in host environments and 

antifungal resistance. 

5. Conclusion 

This study demonstrates the effectiveness of centrality 

measures in identifying key proteins within the Candida 

glabrata protein interaction network. Through STRING 

validation and KEGG enrichment analysis, proteins such as 

BGL2, GAS1, CRH1, and CTS1 were confirmed as central 

nodes with significant roles in fungal cell wall integrity and 

metabolic pathways. The strong correlations between high 

centrality scores and functional annotations affirm the 

biological relevance of these proteins. While the GO analysis 

for the 19-protein set revealed involvement in broad cellular 

processes, the KEGG pathway enrichment for the 11-protein 

set provided more targeted insights into specific functions 

like riboflavin metabolism. These findings validate the use of 

network-based methodologies for uncovering key molecular 

players and open potential avenues for antifungal drug 

targeting. Notably, the presence of low-centrality proteins 

with unclear roles indicates a need for further experimental 

validation to fully understand their potential involvement 

under dynamic biological conditions. 

6. Future Perspectives 

Given the increasing resistance of Candida glabrata to 

current antifungal therapies, identifying essential hub 

proteins provides a promising foundation for novel drug 

development. Future research should integrate transcriptomic 

and proteomic data to refine key node identification, enhance 
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biological accuracy, and uncover condition-specific 

regulatory mechanisms. Advancements in network 

pharmacology and machine learning can facilitate predictive 

modeling and drug repurposing efforts. Additionally, 

molecular docking and simulation studies could further 

validate the druggability of high-centrality proteins. 

Experimental validation of both high- and low-centrality 

nodes will be crucial for translating computational insights 

into clinical applications, ultimately contributing to more 

effective therapeutic strategies against C. glabrata infections. 
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