- Visibility 284 Views
- Downloads 204 Downloads
- Permissions
- DOI 10.18231/j.ijmr.30210.1758356479
-
CrossMark
- Citation
Predictive analysis of binding affinity among human cytomegalovirus (HCMV) proteins and class-I major histocompatibility complex (MHC-I) molecules
Background: Human Cytomegalovirus (HCMV) is a widespread herpesvirus that establishes persistent infections by evading host immune surveillance. A critical strategy involves the disruption of antigen presentation via Class I Major Histocompatibility Complex (MHC-I) molecules, thereby impairing cytotoxic T lymphocyte (CTL) recognition. This immune evasion is facilitated by a group of HCMV-encoded glycoproteins, US2, US3, US6, US10, and US11, which target distinct stages of the MHC-I processing and presentation pathway.
Materials and Methods: A comprehensive bioinformatics workflow was employed to characterize the structure and function of key HCMV proteins. Protein sequences were sourced from NCBI, and domain structures were analyzed using the Conserved Domain Database (CDD). Coding potential was assessed through reverse translation and ORF prediction. Structural modelling and homology were evaluated via Phyre2, PSI-BLAST, and Clustal Omega. Physicochemical properties were determined using ExPASy ProtParam, and transmembrane regions were predicted with TMHMM. Model validation involved RCSB-PDB, PDBsum, Ramachandran plots, and TM-align. Protein-MHC interactions were visualized using Discovery Studio and PyMOL.
Results: US2 and US3 mimic MHC-I structures to bind and retain them within the endoplasmic reticulum, while US6 inhibits TAP-mediated peptide translocation. US10, with its dual transmembrane topology, disrupts HLA-G trafficking, impacting both CTL and NK cell responses.
Conclusion: This study demonstrates how HCMV proteins interfere with MHC-I antigen presentation, emphasizing their roles in immune evasion. US10 emerges as a key therapeutic target. The findings offer novel insights into HCMV’s molecular strategies, paving the way for the development of targeted antiviral treatments and vaccine design.
References
- Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol. 2021;19(12):759–73.
- Novelli M, Natale F, Di Norcia A, Boiani A, Temofonte S, Calandriello F, et al. Early neurodevelopmental outcomes in children with asymptomatic congenital CMV infection. Ital J Pediatr. 2022;48(1):203.
- Turriziani Colonna A, Buonsenso D, Pata D, Salerno G, Chieffo DPR, Romeo DM, et al. Long-term clinical, audiological, visual, neurocognitive and behavioral outcome in children with symptomatic and asymptomatic congenital cytomegalovirus infection treated with valganciclovir. Front Med (Lausanne). 2020;7:268.
- Uematsu M, Haginoya K, Kikuchi A, Hino-Fukuyo N, Ishii K, Shiihara T, et al. Asymptomatic congenital cytomegalovirus infection with neurological sequelae: a retrospective study using umbilical cord. Brain Dev. 2016;38(9):819–26.
- Corey L, Wald A. Maternal and neonatal herpes simplex virus infections. N Engl J Med. 2009;361(14):1376–85.
- Kimberlin DW. Herpes simplex virus infections of the newborn. Semin Perinatol. 2007;31(1):19–25. Biswas et al. / Indian Journal of Microbiology Research 2025;12(3):334–345 345
- Adler A, Nigro G. Prevention of maternal-fetal transmission of cytomegalovirus. Clin Infect Dis. 2013;57(Suppl 4):S189–92.
- Zheng QY, Huynh KT, van Zuylen WJ, Craig ME, Rawlinson WD. Cytomegalovirus infection in day care centres: a systematic review and meta-analysis of prevalence of infection in children. Rev Med Virol. 2019;29(1):e2011.
- Tai-Schmiedel J, Karniely S, Lau B, Ezra A, Eliyahu E, Nachshon A, et al. Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS Pathog. 2020;16(4):e1008390.
- Zhang L, Yu J, Liu Z. MicroRNAs expressed by human cytomegalovirus. Virol J. 2020;17(1):34.
- Avitabile E, Lombardi G, Campadelli-Fiume G. Herpes simplex virus glycoprotein K, but not its syncytial allele, inhibits cell-cell fusion mediated by the four fusogenic glycoproteins, gD, gB, gH, and gL. J Virol. 2003;77(12):6836–44.
- Heming JD, Conway JF, Homa FL. Herpesvirus capsid assembly and DNA packaging. Adv Anat Embryol Cell Biol. 2017;223:119–
- Nguyen CC, Kamil JP. Pathogen at the gates: Human cytomegalovirus entry and cell tropism. Viruses. 2018;10(12):704.
- Kinzler ER, Compton T. Characterization of human cytomegalovirus glycoprotein-induced cell-cell fusion. J Virol. 2005;79(12):7827–37.
- Hegde NR, Johnson DC. Human cytomegalovirus US2 causes similar effects on both major histocompatibility complex class I and II proteins in epithelial and glial cells. J Virol. 2003;77(17):9287–
- Liu W, Zhao Y, Biegalke BJ. Analysis of human cytomegalovirus US3 gene products. Virology. 2002;299(1):49–59.
- van der Wal FJ, Kikkert M, Wiertz E. The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr Top Microbiol Immunol. 2002;269:37–55.
- Gerke C, Bauersfeld L, Schirmeister I, Mireisz CNM, Oberhardt V, Mery L, et al. Multimodal HLA-I genotype regulation by human cytomegalovirus US10 and resulting surface patterning. Elife. 2024;13:e85560.
- Gabor F, Jahn G, Sedmak DD, Sinzger C. In vivo downregulation of MHC class I molecules by HCMV occurs during all phases of viral replication but is not always complete. Front Cell Infect Microbiol. 2020;10:283.
- Rombel IT, Sykes KF, Rayner S, Johnston SA. ORF-FINDER: a vector for high-throughput gene identification. Gene. 2002;282(1– 2):33–41.
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58.
- Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
- Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–8.
- Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 2001;305(3):567–80.
- Lobley A, Sadowski MI, Jones DT. pGenTHREADER and pDomTHREADER: New methods for improved protein fold recognition and superfamily discrimination. Bioinformatics. 2009;25(14):1761–7.
- Bittrich S, Bhikadiya C, Bi C, Chao H, Duarte JM, Dutta S, et al. RCSB Protein Data Bank: efficient searching and simultaneous access to one million computed structure models alongside the PDB structures enabled by architectural advances. J Mol Biol. 2023;435(14):167994.
- Laskowski RA, Jabłońska J, Pravda L, Svobodová Vařeková R, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci. 2018;27(1):129–34.
- Wiltgen M. Algorithms for structure comparison and analysis: Homology modelling of proteins. In: Encyclopedia of Bioinformatics and Computational Biology. Elsevier; 2019. p. 38–
- Zhang Y, Skolnick J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33(7):2302–9.
- Pawar SS, Rohane SH. Review on Discovery Studio: An important tool for molecular docking. Asian J Res Chem. 2021;14(2):86–8.
- Tomar NR, Singh V, Marla SS, Chandra R, Kumar R, Kumar A. Molecular docking studies with rabies virus glycoprotein to design viral therapeutics. Indian J Pharm Sci. 2010;72(4):486–90.
- McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics. 2003;19(7):874–81.
- Whitcomb SJ, Rakpenthai A, Brückner F, Fischer A, Parmar S, Erban A, et al. Cysteine and methionine biosynthetic enzymes have distinct effects on seed nutritional quality and on molecular phenotypes associated with accumulation of a methionine-rich seed storage protein in rice. Front Plant Sci. 2020;11:1118.
- Lee S, Yoon J, Park B, Jun Y, Jin M, Sung HC, et al. Structural and functional dissection of human cytomegalovirus US3 in binding major histocompatibility complex class I molecules. J Virol. 2000;74(23):11262–9.
- Gewurz BE, Wang EW, Tortorella D, Schust DJ, Ploegh HL. Human cytomegalovirus US2 endoplasmic reticulum-lumenal domain dictates association with major histocompatibility complex class I in a locus-specific manner. J Virol. 2001;75(11):5197–204.
- Dugan GE, Hewitt EW. Structural and functional dissection of the human cytomegalovirus immune evasion protein US6. J Virol. 2008;82..
- Park B, Spooner E, Houser BL, Strominger JL, Ploegh HL. The HCMV membrane glycoprotein US10 selectively targets HLA-G for degradation. J Exp Med. 2010;207(9):2033–41.
- Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D, et al. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol. 2011;12(10):984–91.
- Ye L, Qian Y, Yu W, Guo G, Wang H, Xue X. Functional profile of human cytomegalovirus genes and their associated diseases: a review. Front Microbiol. 2020;11:2104.
- Tokmakov AA, Kurotani A, Sato KI. Protein pI and intracellular localization. Front Mol Biosci. 2021;8:775736.
- Bhattacharya M, Chatterjee S, Nag S, Dhama K, Chakraborty C. Designing, characterization, and immune stimulation of a novel multi-epitopic peptide-based potential vaccine candidate against monkeypox virus through screening its whole genome encoded proteins: an immunoinformatics approach. Travel Med Infect Dis. 2022;50:102481.
- Loureiro J, Ploegh HL. Antigen presentation and the ubiquitin- proteasome system in host-pathogen interactions. Adv Immunol. 2006;92:225–305.
- Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell. 1996;84(5):769–79.
- Trevino SR, Schaefer S, Scholtz JM, Pace CN. Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol. 2007;373(1):211–8.
- Krieger F, Möglich A, Kiefhaber T. Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains. J Am Chem Soc. 2005;127(10):3346–52.
How to Cite This Article
Vancouver
Biswas B, Bhaduri A, Saha M, Das D, Sarkar A. Predictive analysis of binding affinity among human cytomegalovirus (HCMV) proteins and class-I major histocompatibility complex (MHC-I) molecules [Internet]. Indian J Microbiol Res. 2025 [cited 2025 Oct 20];12(3):334-345. Available from: https://doi.org/10.18231/j.ijmr.30210.1758356479
APA
Biswas, B., Bhaduri, A., Saha, M., Das, D., Sarkar, A. (2025). Predictive analysis of binding affinity among human cytomegalovirus (HCMV) proteins and class-I major histocompatibility complex (MHC-I) molecules. Indian J Microbiol Res, 12(3), 334-345. https://doi.org/10.18231/j.ijmr.30210.1758356479
MLA
Biswas, Balaka, Bhaduri, Ankita, Saha, Mousumi, Das, Dipanwita, Sarkar, Agniswar. "Predictive analysis of binding affinity among human cytomegalovirus (HCMV) proteins and class-I major histocompatibility complex (MHC-I) molecules." Indian J Microbiol Res, vol. 12, no. 3, 2025, pp. 334-345. https://doi.org/10.18231/j.ijmr.30210.1758356479
Chicago
Biswas, B., Bhaduri, A., Saha, M., Das, D., Sarkar, A.. "Predictive analysis of binding affinity among human cytomegalovirus (HCMV) proteins and class-I major histocompatibility complex (MHC-I) molecules." Indian J Microbiol Res 12, no. 3 (2025): 334-345. https://doi.org/10.18231/j.ijmr.30210.1758356479